Open Access Open Access  Restricted Access Subscription or Fee Access

On the Correspondence of Dark Nuclear Genetic Code & Ordinary Genetic Code

Matti Pitkanen


The basic problem in the understanding of the prebiotic evolution is how DNA, RNA, amino-acids and tRNA and perhaps even cell membrane and microtubules . The individual nucleotides and amino-acids emerge without the help of enzymes or ribozymes but the mystery is how their polymers emerged. If the dark variants of these molecules served as templates for their generation one avoids this hen-and-egg problem. The problem how just the biomolecules were picked up from a huge variety of candidates allowed by chemistry could be solved by the resonance condition making possible metabolic energy transfer between biomolecules and dark nuclei. Simple scaling argument shows that the assumption that ordinary genetic code corresponds to heff/h=n=218 and therefore to the p-adic length scale L(141)≃0.3 nm corresponding to the distance between DNA and RNA bases predicts that the scale of dark nuclear excitation energies is .5 eV, the nominal value of metabolic energy quantum. This extends and modifies the vision about how prebiotic evolution led via RNA era to the recent biology. Unidentified infrared bands (UIBs) from interstellar space identified in terms of transition energies of dark nuclear physics support this vision and one can compre it to PAH world hypothesis. p-Adic length scale hypothesis and thermodynamical considerations lead to ask whether cell membrane and microtubules could correspond to 2-D analogs of RNA strands associated with dark RNA codons forming lattice like structures. Thermal constraints allow cell membrane of thickness about 5 nm as a realization of k=149 level with n=222 in terms of lipids as analogs of RNA codons. Metabolic energy quantum is predicted to be .04 eV, which corresponds to membrane potential. The thickness of neuronal membrane in the range 8-10 nm and could correspond to k=151 and n=223 in accordance with the idea that it corresponds to higher level in the cellular evolution reflecting that of dark nuclear physics. The energy quantum of ordinary Josephson radiation is below the thermal energy for photons but the notion of generalized Josephson junction saves the situation. For massive particles associated with flux tubes the thermal energy T/2 is below the potential energy defined by action potential and that of metabolic energy quantum. Also microtubules could correspond to k=151 realization for which metabolic energy quantum is .02 eV slightly below thermal energy at room temperature: this could relate to the inherent instability of microtubules. Also a proposal for how microtubules could realize genetic code with the 2 conformations of tubulin dimers and 32 charges associated with ATP and ADP accompanying the dimer thus realizing the analogs of 64 analogs of RNA codons is made.

Full Text: