On Magnetic Body, Bio-harmonies, Morphogenesis & Epigenetics

Matti Pitkänen

Abstract

In TGD, magnetic body is an intentional agent using biological body as a sensory receptor and motor instrument. TGD also provides various mechanism used by magnetic body for control and communication purposes, and the notion of bio-harmony suggests itself as a correlate for quantum coherence at the level of basic bio-molecules. How magnetic body and bio-harmony could help to understand biology? Can one identify biological phenomena making these notions compelling? In this article some candidates for phenomena of this kind are briefly discussed. The finding that behavioral patterns of planaria can be remembered also by the piece of split planaria without brains is consistent with the idea that replication of magnetic body coding for behaviors is behind biochemical replication. That alleles of the same gene have different expression could be understood if the bio-harmony assignable to gene carries additional information besides the biochemical information. These notions might help to understand the mechanisms epigenetic. Histone modification and DNA methylation are believed to involve geometric locking preventing transcription. They could also affect the frequency assignable to DNA codon or some key unit so that the resonance condition making possible reconnection of U-shaped flux tubes allowing biomolecules to get in contact and for transcription to proceed fails to be satisfied. Epigenetic inheritance could reduce to inheritance of bio-harmony: the magnetic bodies of cells of offspring get in tune with those of parent.

1 Introduction

What TGD can possibly give to biology is the vision about magnetic body as an intentional agent using biological body as a sensory receptor and motor instrument and about various mechanism used by magnetic body for control and communication purposes. A new element is brought in by Zero Energy Ontology: magnetic body is 4-dimensional and thus correlate for a behavioral pattern rather than 3-D state for part of organism. Also the notion of bio-harmony suggests itself as a correlate for quantum coherence at the level of basic bio-molecules. How magnetic body and bio-harmony could help to understand biology? Can one identify biological phenomena making these notions compelling?

In this article some candidates for phenomena of this kind are briefly discussed. The finding that behavioral patterns of planaria can be remembered also by the piece of split planaria without brains is consistent with the idea that replication of magnetic body coding for behaviors is behind biochemical replication. That alleles of the same gene have different expression could be understood if the bio-harmony assignable to gene carries additional information besides the biochemical information. These notions might also provide a fresh approach to epigenetics. Histone modification and DNA methylation are believed to induce kind of geometric locking preventing transcription. They could also affect the frequency assignable to DNA codon or some key unit so that the resonance condition making possible reconnection of U-shaped flux tubes allowing biomolecules to get in contact and for transcription to proceed cannot be satisfied. Epigenetic inheritance could reduce to the inheritance of bio-harmony: the magnetic bodies of cells of offspring get in tune with those of parent. To how high degree magnetic body and bio-harmony are inherited? This becomes the key question.
1.1 The notions of 4-D magnetic body and bio-harmony

Recall first some key ideas of TGD inspired quantum biology.

1. In TGD framework magnetic body extends the pair formed by organism and environment to a kind of holy trinity. Magnetic flux tubes and the realization of genetic code in terms of dark proton sequences has been the key hypothesis. The model for cold fusion (see http://tgdtheory.fi/public_html/articles/cfagain.pdf) suggests that also more general dark nuclei must be allowed. Dark neutron sequences could correspond to genes separated by dark protons. Dark weak interactions with large value of h_{eff} effectively massless below neuron size scale would play central role and induce large parity breaking effects (chiral selection).

The chemistry would not be all that matters. DNA-nuclear/cell membrane as topological quantum computer with braided magnetic flux tubes would explain why organisms with virtually identical genomes are so different (we and our ancestors for instance). The hierarchy of magnetic bodies would be responsible for the development of intelligence and for cultural evolution. Flux tubes connecting DNA and mRNA as well as mRNA and tRNA molecules are present but it is difficult to say anything concrete.

2. Ontogeny could be seen as a kind of editing process for the text defined by the DNA. Control of control of... is involved so that situation is very complex. Who performs the editing? Does DNA edit itself and is the editing process defining evolution of genome coded by genome? Or is the editing performed by Darwinian selection at cell level (see https://en.wikipedia.org/wiki/Cellular_differentiation)? Or is the magnetic body the editor using genome also as its tool as TGD would suggest? What is important that in TGD framework self-organization in 4-D sense implied by Zero Energy Ontology replaces ordinary self organization leading to asymptotic spatial patterns and select spatiotemporal patterns as asymptotic behavioral patterns defining various biological functions. The role of magnetic body is central in this process.

3. Magnetic body contains cyclotron Bose-Einstein condensates and cyclotron frequencies determined by the strength of magnetic field would give for DNA and other biomolecules additional characteristics. In TGD based model for musical harmony DNA codons would correspond quite concretely to 3-chords but played using dark photons (also ordinary music represented as sounds could be transformed to dark photon music). If one accepts the icosahedral model of bio-harmonies predicting genetic code correctly, there would be 256 fundamental harmonies characterised by the allowed collection of 3-chords and they would add to the information carried by DNA molecules. I have constructed a program building random sequences of the allowed chords using the additional harmonic rule that two subsequent chords contain at least one common note and this music sounds rather harmonic (albeit boring in absence of any other elements!)

4. Could one distinguish between different states/phases of DNAs, mRNAs, tRNAs, and amino acids in terms of harmony? Could their functioning depend on the harmony? With the inspiration coming from the connection of emotions and musical harmonies I have proposed that the harmony associated with a gene or organ could correlate with something analogous to an emotional state or mood - maybe micro-mood or microemotion could be the proper notion. Could amino-acids be happy, hilarious, melancholic, sad, depressed? Could one distinguish between different phases of DNA, RNA, tRNA, aminoacid collections characterized by the harmony in turn characterizing the of a cell, organelle, organ, or even organism? tRNA defines the map of the harmony associated with DNA codons to amino-acid harmony. Is the information about DNA codon and about corresponding 3-chord represented at the level of magnetic body of amino-acid- that is as the 3-chord, which it represents, and realized as the rules telling with which tRNAs amino-acid can reconnect?

In contrast to DNA codons, which represent local information, harmony could represent holistic information and characterize entire genes or their intronic portions.
1.2 Problem

There is however a problem. DNA codons coding for the same amino-acid correspond to different 3-chords of harmony. One of these chords corresponds to amino-acid itself and the codons coding for amino-acid correspond to the orbit of this chord under subgroup of isometries of icosahedron moving the triangles of icosahedron along the orbit. This would apply also to mRNA and maybe also to tRNA. The chords at the orbit of amino-acid are isomorphic (intervals are same) and obtained as transposes of each other.

The chords are isomorphic but not identical and this leads to the problem with resonance paradigm unless one gives up the idea that amino-acid corresponds to a unique DNA codon and assumes that there is analog of gauge invariance allowing to choose the preferred codon freely.

1. The assumption about preferred DNA codon could be given up if one can choose the preferred DNA codon freely so that also the magnetic bodies of amino-acids are characterized by 3-chords and thus carry information about what DNA codon coded them. This is possible if one has the analog of fiber space structure with DNA codons coding for amino-acid defining the fiber and amino-acids defining the base. This fiber structure with discrete gauge invariance is strongly suggestive and I have proposed it for two decades ago but it seems that it poses strong conditions on the orbits of the subgroups of isometries of icosahedron.

This condition is very restrictive. Simplifying somewhat: one considers 60 codons decomposing into 20+20+20 codings and each group of 20 codons codes for amino-acids belonging to different groups. There are twenty of them. The 20 triangles of icosahedron correspond to 3 DNA codons each and each of them corresponds to one and only one amino-acid. One has 3 subgroups of isometries corresponding to 20+20+20 decomposition.

Can one perform a global gauge transformations realized as isometries and moving triangles along the orbits of one of the 3 subgroups involved - say isometry g_1 of G_1? These transformations would move the entire orbits of 2 subgroups involved - call them G_2 and G_3. What happens to the chords of G_2 and G_3: is their character changed completely so that these harmonies would be destroyed? It seems that this cannot work. Should one replace G_2 and G_3 with their automorphs $g_1G_2g_1^{-1}$ and $g_1G_3g_1^{-1}$. Does this make sense? 3-chords defining give orbit should be invariant under automorphisms of G_i? This does not seem to be a realistic condition.

2. Could different automorphs correspond to different collections of chords physically just as global gauge transformations generate different physical situations? Isometries of groups G_i would therefore define physically different realizations of bio-harmonies such that for each of them only one of the DNA codons coding for given amino-acid could actually perform the coding. Ordinary genetic code with many-to-one correspondence would make sense in statistical sense only. If this is true, the cyclotron frequency 3-chord assignable to amino-acid depends on the DNA coding it and implies physical distinctions.

3. One can consider also a third alternative. DNA codon with same 3-chord as coding for amino-acid is in special role in that only it can resonate with the amino-acid! Could DNA codons codons correspond to same cyclotron frequency triplet (magnetic fields) but different value of h_{eff} so that one would have chord with respect to energy rather than frequency. Different values of h_{eff} for DNA codons coding for the same amino-acid would scale their cyclotron frequencies to the same amino-acid frequency while keeping cyclotron energies invariant? Cyclotron energy ratios for codons correspond to rational valued ratios $E_i/E_j = h_{\text{eff}}(i)/h_{\text{eff}}(j) = n(i)/n(j)$. Amino-acid would correspond to fixed h_{eff} and this creates a problem: can DNA codon code for amino-acid with different value of h_{eff}. This option does not look attractive.

Second option looks the most plausible one. Of course, it is early to talk about a prediction: it might well be that I have mis-understood something.
2 How the notions of magnetic body and bio-harmony could help to understand inheritance

Next more concrete ideas about magnetic body and bio-harmony in relation to epigenetics and inheritance will be developed.

2.1 Questions about bio-harmony

One can pose a lot of questions about bio-harmony.

1. It is not necessary to assign any interpretation on the harmony. Just the harmony could be enough if it is forced to be same for DNA, corresponding mRNA, tRNA, and aminoacids. One can however make questions. Is the harmony inherited invariant and could it distinguish between different personality types about which we learned in old books of psychology? Or could the harmonies correlate with our own moods?

2. Could differentiation selecting particular genes as expressed genes apply also to harmonies so that given gene would correspond only to a particular harmony and different copies of gene could correspond to different harmonies. Could this selection rely on the same mechanisms as ordinary differentiation realized in terms of epigenetic mechanisms and DNA editing? From the magnetic bodies of genes the harmony would be automatically transferred to the magnetic bodies of mRNA, tRNA and aminoacids since otherwise the transcription and translation do not work since magnetic bodies do not have common resonance frequencies and reconnection and resonant interaction is not possible.

3. Does given harmony characterize given gene or the entire cell? All basic biomolecules associated with a gene would naturally correspond to the same harmony. If the rRNAs associated with ribosomes are in harmony mutually cellular harmony seems to be the only option. If ribosomes have their own harmonies, only certain ribosomes can translate given gene. This would bring in additional control tool. The most plausible picture is that the situation depends on what happens in the self-organization process. Some organs/organisms are more harmonious, others not so harmonious. Harmony need not be given fixed to remain the same: magnetic body can have motor actions changing the cyclotron frequencies. Moods could reflect the character of harmony at gene level.

4. Does magnetic body control the differentiation by posing restrictions on gene expression or vice versa? The idea about magnetic body as intentional agent suggests that the first option is correct. There would be hierarchy of magnetic bodies with magnetic bodies at the higher level controlling bodies at the lower level. The value of Planck constant would label the hierarchy levels and also DNA codons would be characterized by "intelligence quotient" defined by \(h_{\text{eff}}/h \). This would be nothing but the analog for the hierarchy of program modules and I have earlier considered the realization of this hierarchy (see http://tgdtheory.fi/public_html/articles/braidparse.pdf).

5. The selection of harmony could take place and be analogous to cell differentiation. This would be a self-organization process in which magnetic bodies of genes, cells, etc. tune themselves to resonance with each other by modifying their magnetic fields by controlling their thickness (for monopoles flux the flux is invariant). Something analogous to the development of social skills. This could pose resonance as a constraint on processes like replication, transcription, reverse transcription, silencing, enhancing, editing, etc.... It might induce the differentiation at gene level.

Editing processes for genome could be seen as being induced by the motor actions of the magnetic body involving reconnection and change of the value of \(h_{\text{eff}} \) changing the length of the flux tube and bringing biomolecules near to each other or separating them. This selection would also apply to the intronic part of DNA proposed to be responsible for topological quantum computation like...
processes. The copies of same fragment appearing in intronic portion and copies of genes could correspond to different harmonies.

2.2 Can the notions of magnetic body and bio-harmony explain something that ordinary genetic cannot?

It would be nice to identify some biological phenomenon difficult to understand in standard framework but having an elegant explanation in terms of magnetic body.

1. The notion of harmony could manifest itself at the level of genes as different expressions for the copies of same gene if they correspond to different notions of harmony. The copies of gene are known as alleles (see \url{https://en.wikipedia.org/wiki/Allele}). The alleles can indeed give rise to different phenotypic traits such as different pigmentation.

2. Morphogenesis provides examples of this kind of phenomena [2, 3, 4]. The first key idea is that DNA and cell replication is induced by the replication of magnetic bodies serving as information carriers (see \url{http://tgdtheory.fi/public_html/tgdlian/tgdlian.html#lianPB}) [5]. The second key idea is that in zero energy ontology (ZEO) magnetic body is 4-dimensional and represents behavioral patterns rather than only 3-dimensional patterns. For instance, memory as behavioral patterns can be inherited by the piece of planaria worm not containing the brain. The explanation could be that the magnetic body carries behavioral patterns replicated in the splitting of the worm.

3. Epigenetics studies changes of gene expression not caused by the change of DNA itself. Epigenome (see \url{https://en.wikipedia.org/wiki/Epigenome}) is the highly dynamic part of DNA controlling expression of the rather stable part of genome. One might regard stable part of genome as hardware and epigenome as topological quantum computer programs assignable to magnetic body and modifying gene expression epigenetically. Comment sign in computer code serves as a computer scientific metaphor for epigenetic control by repression.

The modelling of epigenesis in terms of magnetic body and bio-harmonies deserves a separate discussion.

1. The modification of transcription rate is the basic tool of epigenetic regulation. There are two basic mechanisms involved. Histone modification (see \url{https://en.wikipedia.org/wiki/Histone}) affects the histones of chromatin so that the transcription is repressed or activated. Histone modification takes place by several mechanisms. DNA methylation occurs for CpG pair and if it occurs for a promoter region it represses the transcription and serves as a kind of gene lock. The degree of methylation serves as a measure for the effectiveness of repression. I do not know whether the locking is absolute at the level of single gene or whether only the transcription rate is reduced. Two mechanisms are mentioned in the Wikipedia article (see \url{https://en.wikipedia.org/wiki/DNA_methylation}). Methylation can impede geometrically some step in the transcription. Methylated site can be also accompanied by proteins affecting histones in chromatin and in this manner impede transcription.

2. The notions of magnetic body and bio-harmony suggest an alternative - one might even hope fundamental - mechanism of repression. Methylation (histone modification) could affect some cyclotron frequency associated with DNA codon (histone). In the optimal situation for transcription the DNA and protein catalyzing the transcription or mRNA are in resonance. When cyclotron resonance condition is not exactly satisfied, the reconnection rate for the U-shaped flux tubes associated with the molecules involved in the process is reduced and also transcription is repressed.

I have considered also the radical possibility that the dynamics at the level of magnetic body is fundamental for biology and that magnetic body defines templates for the bio-molecular self-organization making dark matter dynamics visible. This is probably too extremist view and it
would seem that biochemistry affects the cyclotron frequencies assignable to the magnetic body by affecting the strengths of magnetic fields also at dark magnetic flux tubes.

3. The notions of epigenetic code (see https://en.wikipedia.org/wiki/Epigenetic_code) and histone code (see https://en.wikipedia.org/wiki/Histone_code) have been proposed. Epigenetic code would consist of histone modifications and additional modifications such as DNA methylation. The codeword of the epigenetic code could code for some larger unit than protein: say gene or entire cell. The hypothesis is that the chromatin-DNA interactions are induced by histone tail modifications (such as methylation, acetylation, ADP-ribosylation, ubiquitination, citrullination, and phosphorylation). There are 4 histones and the position of modification varies as well as the modifier (the above modifications are not the only ones) so that the number of modifications is very large.

The addition of bioharmonies to the genetic information could simplify the situation dramatically since the modifications could be seen as defining of of the 256 bio-harmonies with 64 chords each (this for fixed scale which varies if the value of magnetic field strength is varied: biophoton spectrum in visible is proposed to represent the range of values of magnetic field). The most plausible starting hypothesis is that given harmony characterizes the gene. Much simpler option would be that the harmony characterizes entire cell or even group of cells.

If the modification by kicking cyclotron frequency out of harmony is enough to repress transcription, almost endless number of bio-chemical manners to achieve would exist but the epigenetic code could be very simple at the basic level as TGD would predict. Each bio-harmony would provide a representation of genetic code in terms of 3-chords predicting correctly the DNA-amino-acid correspondence (there are actually two slightly differing codes explaining the presence of 21st and 22nd amino-acid and deviations from the standard code). The states of dark protons (or neutrons) are also proposed to realize genetic code: it is an open question whether these codes imply each other as they should.

4. The understanding of transgenerational epigenetic inheritance (see https://en.wikipedia.org/wiki/Transgenerational_epigenetic_inheritance) raises difficult challenges. One should understand how histone modification and DNA methylation are transferred to daughter cells in cellular division or inherited by the offspring. Transgenerational interaction of the genomes seems necessary. In TGD framework the interaction of magnetic bodies of via resonance mechanism could transfer the epigenetic programs to the offspring. Offspring could "learn" the epigenetic programs of the mother by tuning.

5. Gregory Carey (see http://www.colorado.edu/ibg/people/61) gives nice real life examples about the complexities of epigenesis identified quite generally as gene regulation (see http://tinyurl.com/zb97cgs). He compares the gene regulation involved with the handling of a stressful situation to "nightmarish Rube Goldberg mousetrap" and sees the process as extremely ineffective from engineering point of view. For instance, the hormones secreted to blood circulation are distributed to the entire body. The whole thing could be carried out in brain! He also wonders why evolution is so inefficient. All cells have same genome although most of the genes are silenced. Second strand of DNA is totally un-used and most of DNA consists of introns. His explanation is that evolution does not make long term plans but finds just a solution to a particular without thinking it from a wider perspective: "If it ain’t broke, don’t fix it".

I tend to see this differently. If entire body is coherent quantum entity, engineering based thinking does not make sense. Entire body and also magnetic body must be informed from the stress situation since the reaction is holistic. The genes which are not used for gene expression might be used for other purposes. Topological quantum computation could be this purpose in TGD framework and repressed genes could be thus used for quantum information processing. Information processing could be actually the dominating function of the DNA of higher vertebrates.
To sum up, magnetic body could be seen as the "boss" controlling the gene expression and also the evolution of genome in longer scales. Magnetic body would use bio-molecular mechanisms for its purposes. This would bring in a new kind of inheritance: bio-harmony would be inherited. The most spectacular almost-prediction would be that genetic code is many-to-one only in statistical sense.

2.3 RNA is transferred between soma cells and germ cells

The basic question of epigenesis is how the information between soma cells and germ cells is transferred. In standard genetic the transferer RNA or DNA molecules is necessary to achieve this. In TGD dark DNA, RNA, tRNA, and aminocids consisting of dark nucleons realized as nuclear strings and accompanied by the corresponding biomolecules is one possibility. The extremist view would be that the dynamics of the dark variants of basic bio-molecules induces the dynamics of their molecular shadows making them only visible. Also the transfer of information as cyclotron radiation can be considered in TGD framework and cyclotron resonance could serve as a fundamental mechanism of epigenetic control. The above model suggest that epigenetic control mechanisms rely on resonance mechanism for 3-chords associated with DNA codons and other biomolecules giving them names is also at work besides purely geometrical silencing.

The popular article No Sex Required: Body Cells Transfer Genetic Info Directly Into Sperm Cells, Amazing Study Finds (see http://tinyurl.com/hhdth5j) summarizing the findings discussed in the article [1] (see Soma-to-Germline Transmission of RNA in Mice Xenografted with Human Tumour Cells: Possible Transport by Exosomes (see http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4081593/) as very interesting concerning this basic question.

The abstract of the article gives for a professional a readable summary.

Mendelian laws provide the universal founding paradigm for the mechanism of genetic inheritance through which characters are segregated and assorted. In recent years, however, parallel with the rapid growth of epigenetic studies, cases of inheritance deviating from Mendelian patterns have emerged. Growing studies underscore phenotypic variations and increased risk of pathologies that are transgenerationally inherited in a non-Mendelian fashion in the absence of any classically identifiable mutation or predisposing genetic lesion in the genome of individuals who develop the disease. Non-Mendelian inheritance is most often transmitted through the germline in consequence of primary events occurring in somatic cells, implying soma-to-germline transmission of information. While studies of sperm cells suggest that epigenetic variations can potentially underlie phenotypic alterations across generations, no instance of transmission of DNA- or RNA-mediated information from somatic to germ cells has been reported as yet.

To address these issues, we have now generated a mouse model xenografted with human melanoma cells stably expressing EGFP-encoding plasmid. We find that EGFP RNA is released from the xenografted human cells into the bloodstream and eventually in spermatozoa of the mice. Tumor-released EGFP RNA is associated with an extracellular fraction processed for exosome purification and expressing exosomal markers, in all steps of the process, from the xenografted cancer cells to the spermatozoa of the recipient animals, strongly suggesting that exosomes are the carriers of a flow of information from somatic cells to gametes. Together, these results indicate that somatic RNA is transferred to sperm cells, which can therefore act as the final recipients of somatic cell-derived information.

Some background is needed to understand this rather technical summary.

1. Darwinism has dominated biology since Darwin. The rules of classical Mendelian inheritance conform with the Darwinian view and can be reduced to genetic level. Various traits are inherited genetically by sexual reproduction and genome would change during lifetime only through mutations. Genome changes extremely slowly by random changes for offspring from which selection pressures choose the survivors.

Lamarckian view in turn assumed that the external circumstances experienced by organism leave a trace, which can be inherited but it could not be formulated in terms of modern molecular biology whereas the Darwinian dogma could be formulated in terms of Weissman's genetic barrier. Information flows from germ cells to soma but never in opposite direction. If it would do so, the
soma interacting with environment could transfer information to germ cells and the experiences
during lifetime could leave inheritable trace to germ cells.

An analogous dogma is that information is always transcribed from DNA to RNA to proteins but
never in opposite direction. It is now known that this takes place in case of viruses and retroviruses:
there are so called jumping genes which can also make copies of themselves. 5 per cent of human
genome consists of endogenous retroviruses capable of doing the same. The huge genome of maize
is due to this kind of process.

2. The development epigenetics has started to shatter the belief on Wessimann’s genetic barrier. Gene
expression is not fixed by genome alone and can be change even when genes are unaffected. Silencing
of genes by DNA methylation and histone modification allow to modify gene expression. Silencing
is essentially a locking of gene preventing its expression by transcription followed by translation.

It is now known that epigenetic changes in the gene expression can be inherited. The mechanisms
are still poorly understood. What seems however clear the genome is more like a slowly changing
hardware and gene expression or whatever is behind it is the software and programs can change
very rapidly by just adding or deleting comment signs in the code. A deeper understanding of this
software is needed.

3. Epigenetic inheritance requires that genetic information is transferred from soma cells to germ cells.
If only DNA or RNA are capable of representing genetic information, then DNA or RNA must be
transferred from soma cells to germ cells. No instance of direct DNA or RNA mediated information
from soma to germ cells had been observed before the above mentioned experiments. One can
of course challenge the assumption about DNA and RNA as the only representations of genetic
information.

The basic idea of the experiment was simple. Use a marker for RNA by using plasmids (DNA strands
not belonging to chromosomes) genetically engineered to code for a marker protein making itself visible
by fluorescence. Then one just follows the fate of these proteins generated in soma cells and looks whether
they end up inside germ cells and how this happens.

More technically: mouse model was xenografted with human melanoma cells stably expressing EGFP-
coding plasmid (expressed in a manner possibly evoking emotions: human melanoma cancer tissue was
implanted in mouse). EGFP-RNA is released from xenografted human cells to blood. One just looks
whether it eventually ends up to the sperm cells of mice and tries to identify the transfer mechanism.
Only transfer to sperm cells was studied. One might expect that the transfer of RNA can happen also to
ovum. I guess that the sperm cells are easier to study.

What was observed?

1. The transfer of RNA from soma cells to sperm cells was indeed found to occur. The transferred
RNA can in turn induce epigenetic effects in germ cells known to be inherited by a mechanisms,
which however remain poorly understood. Epigenetic mechanisms seem to be involved in the cases
considered so that DNA is not changed, only its expression.

2. The transfer mechanism was identified. The transferred RNA is contained by exosomes analogous
to synaptic vesicles transferring neurotransmitters from presynaptic to postsynaptic cell. Transfer
of RNA takes place via fusion of the membranes just like transfer of neurotransmitters. Maybe
genetic engineering using exosomes or analogous structures to transfer the needed material to cells
has been tried.

The implications of the findings are dramatic but already implied by the earlier work in epigenet-
ics. What is important that Lamarckian view can be now defended by a concrete genetic mechanism.
Lamarckism implies that the time scale of inheritance becomes the time scale for the appearence of
a new generation. Nutrition, environment, lifestyle and even meditation and similar practices, are already
now known to affect gene expression on daily basis: we are not victims of genetic determinism and are
epipenetically responsible for our own well-being. Epigenetic information can be transferred also to germ

The precise mechanism of inheritance of epigenetic modifications remains still poorly understood
although it seems that the transfer or RNA to germ cells occurs. There are also other hints: it is known
that alleles (variants of game gene) can express themselves differently. One allele can also induce other

As explained, TGD suggests the notion of magnetic body and cyclotron resonance as this interaction.
The DNA of offspring get tuned to the DNA of mother during pregnancy and this gives to epigenetic
inheritance. Various epigenetic mechanisms such as methylation and histone modification could affect
cyclotron frequencies besides purely geometric modifications of DNA and locking at the level of gene
could be accompanied kicking out of tune at the level of magnetic body. In this framework the transfer
of RNA to germ cells would be necessary to affect the cyclotron frequencies.

References

[2] Levin M. The wisdom of the body: future techniques and approaches to morphogenetic fields
in regenerative medicine, developmental biology and cancer. Regen Med. Available at: http://

[3] Levin M. Morphogenetic fields in embryogenesis, regeneration, and cancer: Non-local control of

[5] Pitkänen M. Homeopathy in Many-Sheeted Space-Time. In Bio-Systems as Conscious Holo-
homeoc 2006.

Onlinebook. Available at: http://tgdtheory.fi/public_html/neuplanck/neuplanck.html#
nuclstring 2006.

[8] Pitkänen M. Quantum Mind, Magnetic Body, and Biological Body. In TGD based view about living
matter and remote mental interactions. Onlinebook. Available at: http://tgdtheory.fi/public_
html/tgdlian/tgdlian.html#lianPB 2012.